II YEAR – IV SEMESTER
COURSE CODE: 4BPH4C1
CORE COURSE VIII – ATOMIC AND NUCLEAR PHYSICS
Unit I POSITIVE RAYS
Properties of positive rays – e/m of positive rays – Aston’s, Bainbridge’s mass spectrograph- critical potential – experimental determination of critical potential –Davis and Goucher‘s experiment.
Photo electricity: Photoelectric emission – laws – Lenard’s experiment – Richardson and Compton experiment – Einstein’s photo electric equation – experimental verification of Einstein’s photo electric equation by Millikan’s experiment – Photoelectric cells.
Unit II VECTOR ATOM MODEL
Various quantum numbers – L – S and j – j Couplings – Pauli’s exclusion principle – electronic configuration of elements and periodic classification – magnetic dipole moment of electron due to orbital and spin motion – Bohr magnetron – spatial quantization – Stern and Gerlach experiment.
Fine structure of spectral lines- Spectral terms and notation – selection rules – intensity rule and interval rule – Fine structure of sodium D lines – Alkali spectra – fine structure of alkali spectra – Spectrum of Helium – Zeeman effect – Larmour’s theorem – Debye’s explanation of the normal Zeeman effect – Anomalous Zeeman effect .
Unit III X – RAYS
Discovery – Production, Properties and absorption of X – rays – origin & analysis of continuous and characteristic X – ray spectrum – Duane & Hunt Law – Bragg’s law – derivation of Bragg’s law – Bragg’s X–ray spectrometer – details of Laue, rotating crystal and powder methods- Mosley’s law and its importance - Compton effect – Derivation of expression for change in wavelength – its experimental verification.
X – ray crystallography- Definition of Crystal – Crystal lattice – unit cell –– Bravai’s lattice – Miller indices – illustrations - Structure of KCl crystals.
Unit IV RADIO ACTIVITY
Natural radioactivity – Laws of disintegration – half life and mean life period – Units of radioactivity – Transient and secular equilibrium – Radio carbon dating – Age of earth – Alpha rays– characteristics – Geiger–Nuttal law – α – ray spectra – Gamow’s theory of α – decay (qualitative study) Beta rays – characteristics.
Beta ray spectra – Neutrino hypothesis - Gamma rays and internal conversion– Nuclear isomerism- artificial radioactivity- Betatron – GM counter –– Cloud chamber
Unit V NUCLEAR REACTION
Nuclear fission – chain reaction – four factor formula – critical mass and size – controlled chain reaction – nuclear reactor – Breeder reactor – Transuranic elements – Nuclear fusion – thermonuclear reaction – sources of stellar energy- Cosmic rays (outlines only).
Elementary Particles – Hadrons – leptons – Mesons – Baryons – Hyperons – Antiparticle and antimatter – classification of elementary particles – strangeness – Isospin – conservation laws of symmetry – Basic ideas about quarks – Quark model.
Books for Study
1. Modern Physics – R.Murugeshan , S.Chand &Co; NewDelhi, 13th Edition 2008.
2. Modern Physics – Sehgal & Chopra; Sultan Chand and publication, 9th Edition 2013.
3. Introduction to Modern Physics – H.S Mani, G K Mehta, Affiliated east – West Pvt Ltd, NewDelhi
4. Nuclear Physics – D.C Tayal , Himalaya Pub.house, Mumbai, V Edition 2008.
5. Atomic Physics – J.B Rajam, S.Chand & Co;NewDelhi.
6. Atomic & Nuclear Physics – Subramanyam & Brijal, S.Chand & Co; New Delhi, V Edition 2003.
♣♣♣♣♣♣♣♣♣♣